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Almtraet--Many energy production and chemical processes involve vapor/liquid two-phase flows. Mass 
and energy are often exchanged between the vapor and the liquid phases, and the fluid mechanics of the 
two-phase system is strongly influenced by the exchange of momentum between each phase. Significantly, 
the transport of mass, energy and momentum between the phases takes place across interfaces. Therefore 
the interfacial area density (i.e. the interfacial area per unit volume) has to be accurately known in order 
to make reliable predictions of the interfacial transfers. Indeed, the interfacial area density must be known 
for both steady and transient two-phase flows. It is the purpose of this paper to present a first order 
relaxation model which is derived from the Boltzmann transport equation, and which accurately describes 
the evolution of interfacial area density for bubbly flows. In particular, the local, instantaneous interfacial 
area densities and volume fractions are predicted for vertical flow of a vapor/liquid bubbly flow involving 
both bubble clusters and individual bubbles. Copyright © 1996 Elsevier Science Ltd. 
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1. INTRODUCTION 

Many researchers have applied various techniques in order to measure the interfacial area density 
(A") in two-phase flows. Techniques include dynamic gas disengagement (Patel et  al.  1989; Daly 
& Patel 1992), noise analysis of  transmitted light beams (Mudde et  al. 1992), neutron radiography 
(Chang & Harvel 1992), photography (Akita & Yoshida 1974), ultrasound (Bensler et  al. 1991) 
and electrical resistivity probe (Lewis & Davidson 1983; Serizawa & Kataoka 1990; Lahey & Lee 
1992). The multitude of  measurements and techniques reflects the importance of  interfacial area 
density for all multiphase transport processes. 

The interfacial area density may be described in a precise way using the delta function and 
applying time, space or ensemble averaging (Ishii 1975; Ishii & Mishima 1984; Ishii 1992). The 
ergodic theorem suggests that the specific method of  sampling the set of  events leads to the same 
results, provided that a sufficiently large number of  independent samples are taken. All methods 
of  averaging lead to an equivalent definition of  the interfacial area density. However, a constitutive 
equation is still required which describes the bubble breakup and coalescence. Two basic 
approaches have been used herefore, namely, a local approach and a global approach. In the local 
approach, the bubble size distribution is predicted by modeling the local break-up and coalescence 
processes of  bubbles. Prince & Blanch (1990a, 1990b) described the break-up process based on the 
probability of  liquid eddies colliding with and destroying the individual bubbles. In addition, 
Marrucci & Nicodemo (1967), Thomas e t  al. (1983) and Prince & Blanch (1990a, 1990b) described 
the coalescence process based on the probability that a bubble pair stays together long enough to 
allow for sufficient drainage of  the liquid film between the bubbles so that coalescence can occur. 
Since the coalescence of only two bubbles was considered, these approaches are called binary 
theories. Prince & Blanch (1990a) and Oolman & Blanch (1986) also investigated the influence of 
fluid properties on the coalescence rate. 

Recently, Stewart et  al. (1993) presented the bubble size distributions measured by several 
authors. They found that most bubble size distributions have a pronounced tail, that is, their 
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distribution is much broader than simple models for bubbly flows would allow. They concluded 
that bubble clusters, that is, ensembles of bubbles, have a considerable influence, and that 
coalescence events in these clusters may occur much more frequently than binary theories would 
predict, resulting in more larger bubbles. Garncarek et al. (1991) measured the size of the bubble 
clusters in two-phase air/water flows. Park (1992) presented photographs of bubble clusters and 
the bubbly/slug flow regime transition in oil/air flows. These experimental results further stress the 
importance of bubble clusters in the coalescence process. 

Another approach for predicting interfacial area density was to consider the relevant phenomena 
on a global scale. Ishii & Mishima (1984) presented correlations for the global interfacial area 
density as a function of void fraction and flow regime. Interestingly, the transport equations 
presented in this paper become unstable at the transition from bubbly flow to another flow regime. 
Nagel et al. (1972, 1973, 1976, 1978), Calderbank (1967), Burgess & Calerbank (1975), 
Chandrasekharan & Calderbank (1981) and de Figueiredo & Calerbank (1979) applied 
Kolmogoroff's theory of turbulence and obtained, 

/ /O"  "~ 0.6 
< A ; " >  ~ 0 "  - -  ~ m IpL) <>' [11 

where ( A ; " )  is the global interfacial area density, EL is the dissipation rate in the liquid, a is the 
surface tension, pL is the liquid density, < ~ > is the cross-sectional averaged void fraction and 
m is an exponent which can be fitted to experimental results. Thus Nagel et al. and Calderbank 
et al. predicted the global interfacial area density as a function of global void fraction and 
dissipation rate. They have applied [1] to packed beds, pipe reactors, jet tube washers, stirred 
vessels, pipe flow, bubble columns and dual flow columns. Even though their theoretical approach 
seemed convincing, the agreement with experimental data was often poor. Nagel et al. argued that 
their approach should have been carried out on a local scale, but they had only global data 
available. Interestingly, the present work may be thought of as the derivion of an expression similar 
to [1] on a local scale for the transient process of coalescence and break-up in bubbly two-phase 
flow, thus connecting the local and the global approaches. 

Deckwer (1992) showed that the experimental data for interfacial area density in two-phase flow 
differ widely. He recommended the correlation by Akita & Yoshida (1974) for the global interfacial 
area density in bubble columns: 

I/2 3 2 0.12 2 0.06 
023 (¢ r '~  (gD3p~"~ ( u~ "~ 

( A " ) =  . ~,PLg] ~, IJ2L ] ~gDb] (0~). [21 

In this equation, Db is the diameter of the bubbles, ttL is the viscosity of the liquid, and uG is the 
velocity of the gas. We will use this equation later on to assess our model. 

2. TRANSPORT EQUATION FOR THE PROBABILITY DENSITY FUNCTION 

Kalkach-Navarro (1992) have proposed a form of the Boltzmann transport equation for the 
probability density function, f ,  of the bubbles: 

~--ft + V" [fuG] = b(u ) f (u )  du - b(v) 
l' 

v f ( v )  du + "~ c(u, v - u) f (u )  f (v  - u) du 

-- c(u, v ) f ( u ) f ( v )  du. [3] 
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Heref(v) denotes the probability density function of v, the bubble volume, f i s  the number density 
of  bubbles per differential bubble volume and thus, 

~0 ';¢ 
Nd' = f ( u )  du, [4] 

where N~" is the number density of the bubbles, u~ is the average bubble velocity, and b and c are 
the breakup and coalescence kernels, respectively. The velocity vector uc is obtained from solving 
the momentum balance for the gas phase simultaneously with [3]. Virtual mass effects, forces 
leading to turbulent diffusion, lateral forces and wall forces have an influence in the momentum 
equation, whereas the dependency of the kernels on the flow parameters is discussed next and in 
more detail in section 3, where bubble clusters are considered further. A similar transport model 
has also been used by Guido-Lavalle et al. (1993, 1994). Fortunately, Prince & Blanch (1990) have 
developed equations for these coalescence and breakup kernels. Let us recall that coalescence 
occurs due to contact between bubbles, and the coalescence of bubbles is more probable as (a) the 
contact time between the bubbles increases and (b) the time needed for the drainage of the liquid 
film entrapped between the bubbles decreases (e.g. when low viscosity liquids are used). Collisions 
between bubbles may occur due to (a) the turbulent motion of the liquid, (b) differences in bubble 
rise velocities and (c) the effect of liquid shear. However, Prince & Blanch (1990) found that the 
main influence on bubble coalescence was the velocity fluctuations of the liquid. In particular, the 
higher the liquid phase turbulence level, the more likely it is that the liquid eddies will break up 
individual bubbles and bubble clusters before the bubbles in these clusters can coalesce. We did 
not include the effects of turbulent dispersion in [3]. An additional term is obtained in [3] if 
turbulent dispersion of bubbles is considered. 

We used the following simplifying assumptions in order to obtain an analytical solution of the 
equations given by Prince & Blanch (1990): 

1. The collisions of the bubbles occur due to the turbulent fluctuation velocities, the 
two other mechanisms mentioned above are neglected. 

2. The coalescence rate may be described using one equivalent bubble diameter 
instead of the diameters of both bubbles. 

3. The exponential functions in the collision efficiency and the bubble break-up rate 
are expanded neglecting terms of smaller magnitude at a point of expansion 
corresponding to the data given by Prince & Blanch (1990). 

We obtained, 

and 

where 

b ( u ) = b o ,  [5] 

c(u, v) = Co, [6] 

b0 = b,c, ~'5 \ ~ /  [7] 

and 

/O" ~7/5 
C0 = C,EL -3/5 \ ~ j  • [81 

Here EL denotes the local turbulent energy dissipation of the liquid per unit liquid mass and b~ and 
cj are coefficients to be determined empirically. Note that the data of Schumpe and Grund (1986) 
imply b~ = 0.0163 and c~ --- 0.0369. Assumptions 1 and 2 would somehow restrict the validity of 
the equations to flows with a narrow size distribution of the bubbles. But due to the considerations 
made later on for the bubble clusters, the resulting equations will prove valid also for the general 
case. 
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2.1. Numerical solution of  the transport equation 

We will first solve [3] numerically and present some results in order to better understand the 
transient phenomena involved. We will then solve [3] analytically, obtaining an explicit solution 
for the steady-state local interfacial area density, A;", which we can compare with the results given 
by Akita & Yoshida (1974). 

The numerical evaluation of the Boltzmann transport equation, [3] was carried out using a finite 
difference method, which separated the bubbles into 100 equally spaced volumes for 
one-dimensional bubbly two-phase flow, starting from a uniform bubble size. The transient volume 
distribution was obtained as a result. The volume distribution of the bubbles is shown as a function 
of the bubble volume and the flow path in figure 1. We see in figure 1 that the initial bubbles 
coalesce to form larger bubbles having two times the initial volume, then three times and so on, 
while at the same time the size distribution becomes smoother due to bubble break-up. 

2.2. Analytical solution of  the transport equation 

For steady fully-developed conditions, [3] becomes: 

bo f (u)  du - ~ bof(v)+-~ co f(u)  f(v - u) du - Co f(u)  duf(v) = O. [9] 

It can be verified that the following distribution function satisfies [9]: 

bo 
f (v)  e " / ~ '  = - -  - 

Co 
[lOl 
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Figure 1. Transient bubble size distribution. 
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We note that the void fraction of  the bubbles is the first moment, 

j ~ct~ 

Ctb = uf (u)  du,  [111 
0 

which is satisfied by [10]. 
The interfacial area of  a single spherical bubble, having volume v, is, 

a,~,(v) = (36~)"v 2/3. [12] 

Assuming spherical bubbles, the local interfacial area density for a distribution of  bubbles becomes: 

oo l/6~b 5/6, 
A,~' = (36n) '/a uZl3f(u) du = ~ (36r0'/3F [13] 

where F denotes the gamma function, and F(2/3) = 1.354. 
Thus, using [7] and [8], [13] becomes 

[" O. ~i-0.6 
A,~" : 5.41e°'4 [ - - /  ~b°"83. 

\PL) 
[14] 

We see that the void fraction exponent is different in [14] and [2] for the global and local interfacial 
area density, respectively. However, the analysis does not account for bubble clusters. This is 
significant, since when the void fraction increases, bubble clusters become more dominant and 
coalescence takes place mainly inside the bubble clusters. We will, therefore, underpredict the 
coalescence rate of  high void fractions, by neglecting bubble clusters. This, in turn, will influence 
the exponent of  the void fraction in [14]. Interestingly, Serizawa & Kataoka (1990) gives a void 
fraction exponent of  0.87 for bubbly two-phase flows in a vertical pipe, which presumably involved 
both bubbles and bubble clusters. 

3. MECHANISMS INVOLVING BUBBLE CLUSTERS 

This section is concerned with the prediction of  bubble cluster size, interfacial area density, 
bubble cluster formation and destruction rate, etc. All known terms which may cause formation 
or destruction of  the bubble clusters are considered, but only the most important ones are used, 
so that an analytical solution may be obtained. 

The following phenomena may require modeling if accurate predictions are to be made for 
bubbly flows. 

(1) The break-up of  bubbles into smaller ones. 
(2) The grouping of  two bubbles into a size-2 cluster. 
(3) The grouping ot n bubbles (n > 2) into a size-n cluster. 
(4) The coalescence of  two single bubbles. 
(5) The coalescence of  two bubbles inside a cluster. 
(6) The coalescence of  more than two bubbles inside a cluster. 
(7) The simultaneous coalescence of  all bubbles inside a cluster. 
(8) The removal of  one bubble from a cluster. 
(9) The removal of  several bubbles from a cluster. 

(10) The complete break-up of  a bubble cluster. 
(11) The break-up of  a bubble inside a cluster, leaving a cluster containing more bubbles. 
(12) The break-up of  a bubble inside a cluster, leaving scattered single bubbles. 
(13) The uptake of a bubble by a cluster. 
(14) The uptake of  another cluster by a cluster. 

Bubble breap-up events need to be considered in order to balance the coalescence events. 
Mechanisms (11) and (12) are not likely, so we consider only mechanism (1) for bubble break-up. 
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The coalescence of two bubbles happens when two bubbles form a size-2 cluster, and subsequently 
undergo liquid film drainage and interface rupture. Mechanism (4), direct coalescence of two 
bubbles, can be considered to be composed of the formation of a size-2 cluster, followed 
immediately by the rupture of the interface. Furthermore, mechanism (3), the simultaneous 
clustering of more than two bubbles, can be thought of as the repeated uptake of individual bubbles 
by a cluster. We therefore consider mechanisms (2) and (13), but not mechanism (3). The 
coalescence of several bubbles, or of all bubbles, in a cluster may be thought as successive 
coalescence of various bubble-pairs in a cluster. Thus we may neglect mechanisms (6) and (7). 
Experimental observations (Kalkach-Navarro 1992) show that several bubbles may be removed 
when an energetic liquid eddy impacts a cluster. Indeed, such eddies may destroy small bubble 
clusters completely, or make large clusters smaller. Nevertheless, we may describe this as several 
removals of a single bubble from a cluster, and thus we may consider mechanism (8) while 
neglecting mechanisms (9) amd (10). The uptake of a bubble cluster by another cluster is considered 
to be much less likely than the uptake of single bubbles, therefore we also neglect mechanism (14). 
Thus, we shall consider only five mechanisms: (1), (2), (5), (8) and (13). 

3. I. The break-up of  single bubbles 

Prince & Blanch (1990b) describe the break-up process of a bubble in two steps: he first modeled 
the probability for the impact of a liquid eddy with a bubble, and then modeled the probability 
that this impact will cause a break-up. We may write this process symbolically as 

Rl:b--*b + b. [15] 

The break-up process of single bubbles has nothing to do with clusters, so we can apply the result 
from the previous section and find that the bubble cluster breakup rate is: 

R, = r, fbN;", [161 

where fb is the average volume of the bubbles outside of the clusters, and the coefficient r~ is just 
the break-up kernel in [3], thus 

O" ~- 11,'5 
j, 9,5 [17] rl-----~,iEL' \ p L ]  ' 

Equation [16] will hold only if the bubbles are not strongly restricted by walls, such as in the case 
of a Taylor-bubble, so that the break-up frequency does not increase with bubble volume. 

3.2. The grouping of  two bubbles into a size-2 cluster 

We may write the bubble cluster mechanism as 

g2: b + b ~ Cl[2] [ 18] 

As discussed previously, Prince & Blanch (1990b) proposed three mechanisms which can bring 
bubbles together so that a cluster may be formed: (a) turbulent liquid velocity fluctuations, (b) the 
different relative velocities of the bubbles due to different bubble sizes, and (c) the different 
velocities of the bubbles at neighboring positions due to a shear field in the liquid. Prince showed 
that the first mechanism dominates bubble collisions. Nevertheless, the second mechanism will be 
important for the uptake of  bubbles into clusters, since the relative velocities of bubbles and clusters 
are quite different, and the wake of the cluster can be quite large. For  low void fractions and low 
dissipation rates, the rate of bubble grouping events is the same as the coalescence rate. We see 
this as follows: since the dissipation rate is low, there are few liquid eddies, and the bubble clusters 
are not knocked apart. Since the void fraction is small, it is not very probable that the bubble pairs 
(i.e. clusters) may take up further bubbles, thus for all bubble pairs, there is only one further thing 
that can happen; they all coalesce after a sufficient time. We therefore may use our previous findings 
for the coalescence rate to describe the grouping of  bubbles into bubble pairs as: 

R2 = r2N~ "2, [191 
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where the coefficient r2 is half of the coalescence kernel in [3] 

/ \7/5 
!~ .-3/5/&~ r2=2~'tL ~pL)  " [20] 

The factor ½ in [20] avoids double counting of grouping events. Equation [19] implies the assumption 
that the grouping mechanism is statistical, and therefore proportional to the probability of a binary 
interaction, which is proportional to the number of density squared. There are some conditions 
when bubbles collide less frequently then predicted by [19]. This includes situations of flow in very 
narrow tubes at low gas loads, or at very low superficial gas velocities in the so-called homogeneous 
flow regime in a bubble column where very small bubbles without considerable coalescence may 
be obtained under very retricted conditions. 

3.3. The coalescence o f  two bubbles inside a cluster 

The mechanism is given symbolically by 

Rs: Cl[nl--,Cl[n - 1]. [21] 

We note, that for very small void fraction, mechanisms (2) and (5) reduce to the coalescence 
mechanism for single bubbles 

R,: Cl[2]--.b. [221 

The coalescence rate in size-2 clusters is obtained from the number per unit volume of size-2 
clusters, Cl[2], divided by the average time needed for interstitial liquid film drainage. Prince & 
Blanch (1990b) give an expression for the average liquid film drainage time: 

rd = d~ vb' , [23] 

where Prince gives d~ = 1.18. The coalescence rate is then given by 

R5 = d,G -~/2 ( a  "~-'/2Cl[2 ] = r5Cl[2], [241 \Z,, 
where 

17" "~- 1/2 
rs = d, ffb '/2 \-~L] " [25] 

Interestingly, [23] does not include the influence of liquid viscosity. In a separate study 
Kalkach-Navarro (1992) applied the model given by Thomas et al. (1983) which gives the mean 
liquid film drainage time as 

3 D 14/3 
= _ _  _ E2/3 b [26] 

q~d 3 2 n  /ZLpL L' C ~ 2 ,  

where Db is the bubble diameter, he is the critical film thickness and/~L is the viscosity of the liquid 
phase. We did not apply this equation, since the critical film thickness, he, is unknown and will 
depend itself on fluid properties. Nevertheless, we obtained good agreement with experimental data 
applying [24]. 

For the general case, describing the coalescence of a bubble pair within a size-n cluster 

R5: Cl[n] ~ Cl[n - 1], [27] 

we assume that the number of coalescence events increases linearly with the number of bubbles 
in the cluster, thus 

R5 = rdn - l)Cl[n]. [28] 
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Significantly, detailed comparisons with data, to be discussed later, indicated the best prediction 
of bubble cluster sizes occurred when we used: 

dl = 0.429. [29] 

Hence, [29] is the recommended parameter to be used in [25] and [28]. 

3.4. The removal o f  one bubble f r o m  a cluster 

This mechanism is given symbolically by 

R8 = Cl[n]~Cl[n  - 1] + b. [30] 

Levich (1962) has modeled the length of time that two bubbles remain together before being 
knocked apart by the liquid phase turbulence as: 

1 fb2~ge~_,.3, [31] 

where d2 is a constant. This equation has been applied by Prince & Blanch (1990) and 
Kalkach-Navarro et al. (1992, 1993). We may thus describe the removal of one bubble out of a 
size-2 cluster as: 

R8 = Cl[2] 1. [32] 

We assume that the rate of  removal events increases with the number of bubbles inside a cluster, 
since the probability of a liquid eddy colliding with one of the bubbles in the cluster increases. 
Assuming a linear dependence, and noting that the minimum size cluster is n = 2, we obtain: 

R8 = Cl[n] 1 (n - 1) = dzE~'3~bZ:gCl[n](n - 1) = rs(n - l)Cl[n]. [331 
Tb 

Fitting the constant d2 from experimental data (1986) we obtain: 

dz = 4.94 × 10 -9. [34] 

3.5. The uptake o f  a bubble by a cluster 

This process is represented by: 

R~a:Cl[n] + b-*Cl[n + 1]. [35] 

Prince & Blanch (1990b) found that the grouping of two bubbles to form a size-2 cluster is mainly 
due to turbulent liquid fluctuation velocities, since the differences in the bubble rise velocities are 
relatively small. We have already considered this in mechanism (2), where the dissipation rate in 
the liquid associated with the turbulent fluctuation velocities was used for modeling. In this case, 
the rise velocities of  the bubble clusters and the individual bubbles are quite different; indeed, 
clusters overtake bubbles and may then capture them in their wake (Kalkach-Navarro, 1992). We 
therefore use the second of the mechanisms considered by Prince & Blanch (1990b): 

R , 3  = N~"nCl[n]f2"31~,,Cl - aR,b [, [36] 

where the relative velocity of vapor field-k with respect to the liquid is given by: 

ti~.k = ~k - tTL. [37] 

Due to a lack of better information, we have assumed herein that the increase of the relative velocity 
of  the clusters, and the consequent increase of the size of the wake of the clusters, which increases 
the rate of bubble capture, is directly proportional to the number of  bubbles inside the cluster times 
the relative velocity difference between the clusters (aa) and single bubbles (rib). Thus we obtain, 

R,3 = r~3N~" nCl[n], [38] 

where 

r,3 = [tIR.C,- tTR.b [f~/3. [391 
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4. T H E  S T E A D Y  STATE S O L U T I O N  

4.1. Number density o f  clusters 

The n u m b e r  o f  clusters conta ining between 2 and  n bubbles  m a y  change because: 

• single bubbles  m a y  group  to fo rm size-2 clusters, 
• the bubbles  in size-2 or size-(n + 1) clusters can coalesce, 
• one bubble  m a y  be removed  f rom a size-2 or size-(n + 1) cluster, or  
• one bubble  m a y  be taken up into a size-n cluster. 

Thus,  using [19], [28], [33] and  [38] we obta in  the following balance law for  bubble  clusters: 

rzN ''2b - r5 C112] - rs C1121 

Grouping Coal~cenee Removal 

+rsCl[n + 1]n + rsCl[n + 1]n - r,3N~"Cl[n]n = O. 
k J k .) k J 

x r y Y 

Removal Coalescence Uptake 

[40] 

The  total  n u m b e r  o f  bubbles  is assumed to be bounded.  This implies that  nCl[n]--*O as n ~ oo. The  
right hand  side o f  [40] mus t  become zero as n--* ~ .  Therefore  

Cl[2] = r2N~"2. [41] 
r5 + rs 

Also, f rom [40] 

Cl[n + 1] = Cl[n] rl3N;" 

Solving [42], with the condi t ion [40] for  Cl[2], gives 

[42] 
r5 -F rs" 

Cl[n] = ~3 N~" Z "- I, [431 

where 

r l 3 N b '  r l3~b  

Z - r5 + r-~-s - Vb(r5 "4- rs)" [44] 

The  total  n u m b e r  density o f  bubble  clusters is thus: 

r.~_2 Z Cl[i] = N~" [45] 
i= 2 r13 1 - X 

and the total  numbe r  o f  bubbles  in these bubble  clusters per  unit vo lume is 

iCl[i] = --r2 ~Vb~r"~--O ,',~ Z" = --r2 ... .  Z(2 -- Z) 
,=~ r,3 oz ,=2  r,3 ~vb -(T'-- ~ " [46] 

4.2. The average volume o f  bubbles in the bubble clusters 

The  total  gas vo lume in bubble  clusters containing n or  more  bubbles  increases due to the up take  
o f  bubbles  into the clusters and  decreases due to removal  o f  bubbles  f rom the clusters, but  
coalescence affects the total  gas vo lume only if two bubbles  in a size-n cluster coalesce, since after  
coalescence this cluster will be o f  size n - 1 and thus will no longer contr ibute  to the gas volume 

IJMF 22/6--C 
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in bubble clusters having n or more  bubbles. For  n = 2, using [19], [28], [33] and [38] we have the 
following balance law for gas volume: 

~.,,2~- r, Cl[212go[2] rsCl[2]2~Cl[2] = r 2 1 v b  ~ U b  - -  

k ~ l  k ) k d 
'N r Y " V '" 

Grouping CoaleSCence Removal 

similarly, for  n > 2: 

-g13Nl~" ~ iCltilfb + r, ~ ( i -  1)Cltilfclti], 
i = 2  i = 3  

k ~ l  k ) 
V W 

Uptake Removal 

rl3N~"Cl[n- l ] ( n -  1 ) ( ( n -  1 ) f a [ n -  11 + G) 
1 "V 

Uptake from Cl[n - l] 

-rsCl[nl(n-  l )ngc l [n] -  rsCl[n](n- l)nfcl[n] 
k ,t t ~  ) 

Coalescence Removal 

[47] 

= -rt3N;" ~ iCl[ilG + rs ~ ( i -  1)Cltilfc,[i]. 
i = n  i = n +  1 

i _ _ )  k ) y " , (  

Uptake Removal 

Assuming that  the average bubble volume is the same in all size bubble clusters 

And using [42] 

we find that  

[481 

~c,[i] = fcl[j] = fo ;  i , j  > 2. [491 

r~3N;"Cl[n - 11 = Cl[n](r8 + r,), [501 

Ct[n](r, + rs)(n - 1)(G - gCl) = ~ (i - 1)Cl[i](rsfo- (r, + rs)G), [511 
i = n + l  

where fc~ is the average bubble volume inside the clusters. We may evaluate the summat ion using 
[43]: 

( i- l>Cl[i]= r-LN~' ~ ( i - - l , z ~ - ' =  r--Z2N~'(~--~ ~, Z ~-  ~, Z i - l )  
i = n +  1 r13 i ~ n +  1 r13 i = n +  1 i = n +  I 

rl3 \'i---~-- Z ] I ~( 

r2 N~" (n + 1)(1 - )~) + Z - (1 - )~) Z" 
= r,--~ (1 - 2) 2 

. . . . .  f n -  1 1 "~ 
= r E l y  b Z ~-~__  Z + - -  r,3 (1 Z)i] .  [521 

Neglecting the second term in the parentheses in [52], which is small, we obtain from [51]: 

r2 . . . . .  n - 1  (ra~c~ - (r~ + rs)~b). r,3r--L'-N;"X"-I(r' + rs)(n - 1)(G -- f a )  = )-~3 ~vb X 1 -- X [53] 
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Hence, we obtain for the average volume of  bubbles inside the clusters: 

(rs+rs)vs( l  + l g-~- g)  1 
t~cl= " ~b  

r s l - - ~ z + r s + r s  (1 r5 ) r s + ~ Z  

[54] 

For  the average bubble volume for size-2 clusters, using [41] and [48], we find: 

r2N~"2(2~. - 2fc,[2]) = ~ (i  - l )C l [ i ] ( r s~a  - (r,  + rs)~b). 
i = 3  

[55] 

or from [52], using [44]: 

~FUt2 
r21,b 2 - X 2r2N;"2(fb -- tYo[2]) = ~ r 5  + Z (1 -- Z) 2 (rstSa -- (r5 + rs)t3b). [56] 

Thus the average volume of  bubbles in size-2 clusters using [54] is: 

X ~ 1 + - -  
t~¢,[2] = ~b 2(1 - Z)2, [571 

1 rs 
rs + rs Z 

which is the same as the average bubble volume in the other bubble clusters if we neglect the second 
term in the numerator• Thus, 

~c,[21 = ~a. [58] 

We may now evaluate the void fraction of  the clusters: 

• c, = ~ iCl[ilfc,. [59] 
i = 2  

We use [52] and [50] to obtain: 

r2 ..... X(2 - Z) - 
• c, = r,--; ~vb (~-__-~)~  vb 

1 r5 

r5 + r---~ ;~ 

[60] 

Since the number of  bubbles outside of  clusters times their average volume is the void fraction, 

Nb"tSb = ab, [61] 

we obtain for the volume fraction of  the gas in the bubble clusters: 

r2 Z(2 -- Z) [62] 
~CI ~ ~ b -  

(1 -- Z) 2 1 rs 
r5 + rs Z 

We may now evaluate the average number of  bubbles per cluster: 

iCl[i] ~ N~" Z(2 - Z) 
_ ,=2 _ r,~ -~ Z'Z')Y 

~ , ~  
~Cl[i]  r .  1 - X 

i = 2  

= 2 - X = l +  1 [631 
1 - - Z  1 - - Z '  
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Let us next consider the average relative velocity of clusters: 

iCl[ ilfc,~R a[ i ] 
i = 2  

tIR.Cl = [64] 

iCl[i]fc, 
i = 2  

We note in [64] that the average bubble volume, gc~, will cancel out, since it is the same for all 
clusters. We assume that, due to buoyancy, the relative velocity of a cluster is proportional to the 
gas volume in the cluster, thus 

ffRC,[i] = UR.biVCl/Vb. [651 

Hence from [54], 

r--L N~" ~ i)( li 1 ffr.b 

rl3 i = 2 1 r5 
r5 + r8 Z 

r2 
N;" ~ i)(- I 

r13 i = 2 

t/r.b 
1 r5 

02 )~, 

Z -~Z2 i = ° + , Z' 

~e 

i = -  

r~ z ( 2 ~  z (1 - z)  ~ 
I - - - Z  

r5 + r8 

tir'b ( 1 +  2 ) 
r, (2 - Z)(1 - ZJ " [661 

1 X 
r 5  + r8  

In subsequent developments we will assume for simplicity that the average velocity of the bubble 
clusters, t/c~, is the same for the transport of bubble cluster volume fraction (~o) and for the number 
density of clusters (X CI). 

4.3. lnterfacial area density 

The geometrical interfacial area density is defined by: 

Aig-, = fi,~ ~ Cl[i]i(gc,/fb) 2'3, [67] 
i = 2  

where a~b is the average interfacial area of a single bubble outside the cluster, averaged over the 
size distribution of the bubbles. Actually, the interfacial area density of some of the bubbles in the 
cluster will not be available for momentum, mass and heat transfer, since they are shielded from 
the continuous phase by the other bubbles. These self-shielding effects cause the effective interracial 
area density of the clusters which is responsible for momentum, heat and mass transfer to differ 
from the geometrical interfacial area density. Therefore, we define the effective interfacial area 
density of the clusters as: 

A;~, = (t,~ ~, Cl[i]i"(fc~/&) 2,'3, [68] 
i = 2  
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where m = 1 implies that each bubble contributes equally to the interfacial area density; which is 
the geometric interfacial area density. The exponent m must be smaller than unity, however the 
value of  the correct exponent is not known, since it is not easy to measure the interfacial area 
density whigh is actually available for momentum, heat and mass transfer. Indeed this requires the 
use of  complicated chemical measurement techniques. As a result, the geometric interfacial area 
density was used for this study. Using [46] we obtain: 

Note that 

Therefore, 

,,, X( 2 -- X) ( 1 )2/3 A,cl = a,~ r2 N~" 

r5 + r-~, X 

[69] 

a,~N~"= Ag'. [70] 

/_2/3 
A~'l = Ag r2 Z(2 - X) r5 

r13 ~-~ ~Z-Z- ~ 1 [71] r5 +~X • 

4.4. The average bubble volume 

We have already discussed the balance law for the gas volume which is taken up into all the 
clusters and removed from them. A mass balance for the bubbles outside of  the clusters gives no 
additional information, but a balance for the number of  these bubbles does. The number of  bubbles 
outside the clusters is increased by the break-up of bubbles, by the removal of  bubbles out of  
clusters and by coalescence in size-2 clusters. It is decreased due to the uptake of  bubbles into 
clusters and the grouping of  bubbles into size-2 clusters. The appropriate balance law is: 

lr~bNb + rs ~ (i -- l)Cl[i] + rs2Cl[2] + r5Cl[2] 
i=3 

Break-up Removal Coalescence 

=2r2N~ "2 + rt3N;" ~ iCl[i], 
i=2 

_ _  ~ k V .J 

Grouping Uptake 
[72] 

where the first term will be discussed in the next section. Using [44], [46], [50] and [41] we obtain: 

6b _ 4 r 2 + 2 r 1 3  r 2 g ( 2 - - g ) _ 2 r l 3  rs r 2 z ( 2 - - X )  4r2 rs 2r2 r5 
Nd' rt rl r~3 (1 -- Z): r~ r5 + rs rt3 (1 -- Z) 2 rl r5 + rs ri r5 + rs 

r2r5 ( X(2-- X)~ 2 r2r5 
= 2 rl(r5 + r8) 1 + (1 -- X)2,] - (1 - Z) 2 r,(r5 + rs)" [73] 

Finally [61] yields: 

1 ~ 2  r2r5 
~b = 1 -- X r,(r5 + r,) ~b. [74] 

We may iteratively calculate the average bubble volume, 6b, as follows: 

(1) Makes a guess for 6b- 
(2) Evaluate the factors, r~, r2, rs, rs and rl3, from [17], [20], [29], [34] and [39], respectively. 
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Table 1. Summary of the equations to predict the steady-state inteffacial area densities 

Coefficients for the different mechanisms 

Break-up: rl = 0.0163E~ 's [17] 

Grouping: r2 = ½0.0739EC 3's [20] 

Coalescence: rs = 0.429ff ~:2 [29] 

Removal: r8 = 4.94 10-901'3/~b -2/9 [34] 

U p t a k e :  r~3 = fiR.Or - -  iiR.blVb 2/3 [39] 

The interfacial area densities 

• ~083 [ 1 3 ]  Bubbles: Ag = 5.41E °4 

Clusters: A2~ = A;~G(x) [71] 

r2x(2-~? 1 ( ~ ) X )  -3'<2 where, G(~) 
r ,3 ( l  - -  Z)  \ ( r s _  

r t 3 N ~ "  
and Z - (rs + rs) [44] 

The average bubble volume 

1 / 2  r2r5 Orb Bubbles: ~b = ~ ~ ~ [74] 

1 Clusters: 6ct = 6b [54] 
1 rs 

r5 + r~---~ Z 

Volume fractions 

Bubbles: ~b = fbN~" [61] 

r2 Z( 2 - X) [62] Clusters: ~tc~ = ctb-  
r,3 (I -- Z)2(1 rs X~ 

(3) M a k e  a guess for  X, (0 < g < 1). 
(4) E v a l u a t e  the b u b b l e  vo id  f rac t ion ,  atb, f rom [44]. 
(5) E v a l u a t e  the  v o l u m e  f rac t ion  o f  the clusters ,  0to, f r o m  [60]. 
(6) I te ra te  f r o m  step (3) un t i l  the to ta l  vo id  f rac t ion ,  ~t, is ~t = ~tb + ~tc~. 
(7) E v a l u a t e  gb f r o m  [74]. 
(8) I te ra te  o n  gb s t a r t ing  f r o m  step (1) un t i l  the process  converges .  

T h e  equa t i ons ,  which  are r equ i r ed  to eva lua t e  the s teady  state  so lu t ion ,  are  s u m m a r i z e d  in table  1. 

4 .5 .  S i z e  d i s t r i b u t i o n  

Let us  n o w  recons ide r  the  size d i s t r i b u t i o n  impl ied  by  o u r  m o d e l  a n d  relate it to p rev ious  w o r k  
d o n e  by  K a l k a c h - N a v a r r o  (1992). W e  no te  tha t  t e rms  o f  the form:  

e - , / eb ( I  - rs/C,s + rs)x) = e-,./eb e,./,~b(,5/(,, + r,))X [75] 

occur .  I f  we m a k e  a T a y l o r  e x p a n s i o n  o f  the second  e x p o n e n t i a l  f u n c t i o n  o n  the r ight  h a n d  side 
o f  [75] a n d  cons ide r  o n l y  the  t e rms  u p  to first o rde r  we have:  

r5  v t f 
e -~'/"b(l + ,~/('5 + '8)x) ~ e--O'/:b) + ~ r 5  + r8 X --gb e - ' "  .b, . [76] 
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We may then obtain an analytical solution for the 
us rewrite the Boltzmann transport equation [3], 

Zt2 

OO--ft + V " tucf]  = r , f ( u ) d u - r ,  2 f ( v ) +  

size distributions under this approximation. Let 
given by Kalkach-Navarro (1992): 

½~oCf(u)f(v-u)du-ffcf(u)duf(v), [77] 

where we have substituted rl for b(u) to describe the bubble break-up mechanism. This equation 
gives bubble break-up and coalescence for small void fractions if we identify f with the number 
density of bubbles outside the clusters. We note that Kalkach-Navarro (1992) usedfas  the overall 
number density for both the bubbles and the clusters. Actually, as observed by Park (1992), the 
coalescence mechanism consists of two separate steps: formation of size-2 clusters from single 
bubbles and then coalescence inside of the clusters. We therefore use the grouping of two bubbles, 
mechanism (2), instead of the second coalescence term in [77]: 

-- of(u) duf(v) = - 2r2N6"f(v). [781 

We obtain instead of the first coalescence term in [77] a source term for bubble coalescence in size-2 
clusters: 

1;" ~o'f[2](u)f[2](v u)du, "~ cf(u) f (v  - u) du = r5Cl[2] - [791 

where f [2] is the normalized size distribution of bubbles in clusters containing two bubbles. We 
remark that using [41] this term may be brought into the form given by Kalkach-Navarro, [77], 
for the limiting case of nearly no clusters. We obtain one more term due to removal of bubbles 
from size-2 clusters: 

2rsCl[2]f[2]. [80] 

The transport equation for bubbles outside of the clusters becomes, if we also assume that the 
up-take of bubbles into the clusters and removal of bubbles out of the clusters occurs with all 
clusters: 

fo fo Of+ v 
V- [ucf] = rlf(u) du - r, -~f(v) - 2r2 f(u) duf(v) 

--r13 ~ iCl[ilf(v) + rsCl[2] f[2](u)f[2](v - u) du 
i = 2  

+ 2rsCl[2]f[2] + r8 ~ ( i -  1)Cl[i]f[i]. 
i = 3  

[811 

The stationary solution for the bubbles is to a good first order approximation: 

f(v) = Nf' e_,,/e ~ 
Vb 

and, for the bubble clusters 

[821 

fct(V) = 1 e_,./,,a. [83] 
DCI 

Introducing [82] and [83] in [81] and using [76], yields two linear dependent equations in e -'j*'~ and 
(V/gb)e-"/% Except for the information lost due to the approximations used in this section, the 
resulting equations for the average bubble volume, gb, are identical with [74]. The same procedure 
may be done with the transport equations for the clusters, resulting in equations for the average 
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bubble volume inside the clusters, fc,, identical to [54]. That  is, we used kernel functions which 
were independent of the actual bubble diameter, and, as may be justified from experimental results 
published by Prince & Blanch (1990), only dependent on the average bubble diameter. This results 
in exponential functions for the size distributions, and calculations with the average bubble volume 
in the balance equations for the gas volume gives the same result as a calculation done with size 
distributions. A discussion of how to evaluate the balance equations if the kernels are functions 
of  bubble diameter may be found in Kalkach-Navarro (1992). 

4.6. Comparison with experimental results 

Schumpe and Grund (1986) measured the void fraction of  bubble clusters and individual bubbles 
in a bubble column having a 30 cm inner diameter. The column was 4.4 m high, so that entrance 
effects may be neglected except for the case of  very small superficial gas velocities. The total void 
fraction and the superficial gas velocity were used as an input for the calculation. The dissipation 
rate was obtained from Prince et al. (1990b) as 

EL = jcog, [84] 

where jo0 is the superficial gas velocity and g is gravity. 
The measured and predicted values of the void fractions are presented in figure 2. The agreement 

between the measured and predicted values of the total void fraction is expected, since the total 
void fraction was used as an input for the calculation. However, the predicted bubble and bubble 
cluster void fraction is also quite good, which supports our modeling assumptions. Even though 

0.4 

' 0 3  L ~ J  

¢ -  

0 

o 0.2 O3 
t , . .  

N - . -  

" 0  
0 0.1 

0 

• o. bubb les  
0 c lusters  
[] total  

" ~ z V  

0 5 10 15 20 

superficial gas velocity [cm/s] 
Figure 2. Measured (Schumpe & Grund 1986) and predicted void fractions of bubbles, clusters and total 

void fraction. 
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Figure 3. Interfacial area density from the analytical solution, the complete model including clusters, and 

from an empirical correlation, [2], by Akita & Yoshida (1974). 

0.3 

Schumpe & Grund (1986) did not measure the interfacial area density, the predicted interfacial area 
density is shown in figure 3. The analytical solution, given by [14], does not include bubble clusters. 
It is expected to give reasonable values only for small superficial gas velocities. The correlation of  
Akita & Yoshida (1974) is widely accepted. This correlation includes bubble-clusters and is in very 
good agreement with the interfacial area densities predicted by our model. 

5. FIRST ORDER RELAXATION MODELS 

5. I. Number  density o f  bubbles and bubble clusters 

While [3] is a valid transport equation, it is often difficult to evaluate. Thus, let us develop a 
first order relaxation model for a bubbly flow containing bubble clusters. A perturbation analysis 
is made with the fully developed steady state reference. Only terms of  up to first order are 
considered. The transport equation which is obtained may be written in terms of  the linear 
difference of  the variables from the steady state on the right hand side. Thus, it is called a relaxation 
model. A first order model will give accurate solutions only near the steady state. Thus, for example, 
describing a flow where one very large bubble is broken up into a swarm of  small bubbles requires 
a full non-linear model. 

First, we need to define the steady, full developed, state, which we will use as reference state. 
At any instant, we calculate the steady-state void fraction of  bubbles outside of  the clusters from 
the local value of  the total void fraction. We then use table 1 to calculate the interfacial area 
densities for the steady-state. 

Let us now consider the transient development of  bubble clusters. The transport equations for 
the bubble clusters may be easily derived from [40]: 

DclCl[2] 
Dt  - r2N~ "2 -- (rs + r8 + 2r,3N~")CI[2] + (rs + r5)2Cl[3] [85] 
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and 

Dcl Cl[n] 
Dt  = (r5 + rs)(nCt[n + 1] - (n - 1)Cl[n]) + rt3N~"((n - 1)Cl[n - 1] - nCl[n]). [86] 

Let us observe how the number of  clusters changes if the number of bubbles is suddenly decreased 
and then kept constant at a smaller value. The number of clusters therefore begins and ends at 
a steady-state. Figure 4 shows the difference of the number of  bubble clusters in the two 
steady-states versus the nondimensional time 

t* = (r5 + rs)t. [87] 

For  all practical parameter combinations, we find that there is one dominating eigenvalue of [85] 
and [86]. Indeed, the curves in figure 4 become nearly straight, parallel lines almost instantly. Thus, 
we have essentially a first order relaxation model. 

We have evaluated the characteristic time corresponding to this eigenvalue numerically and have 
obtained: 

1 1 + X [88] 
r = ( r s + r s ) ( l _ z ~ .  

We have also obtained from these numerical calculations that the number of  bubble clusters can 
be written as, 

Cl[n, t, z] = a(t ,  z )s( t ,  z )  "-2,  [89] 

as soon as the curves in figure 4 have become parallel. Note that 

C112, t, z] = a(t ,  z). [90] 

, ~  10-1 cq 
1 

0 10 "2 
i m  

10 -3 

~ 0.4 

lO-S 

.~ 10 ~ 

E 0 .7 
" 1 

0.8 
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~ 10  -9 

° 

0 5 

size-2 clusters 
- -  size-3 clusters 
---size-4 clusters 

size-5 clusters 

10  

dim'less time (r, + r,) t 
Figure 4. Difference from the steady-state values for the number of bubble cluster. 
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The steady-state values are 

and 

a(t--* oo, z)  =- a~ - 
Y2 Nb tt2 

r5 + rs 

s(t--* 0% z)  = Z. 

We look for a relation between the deviation of a from its steady-state value, 

6a = a -- ao~ 

and the deviation of  s from its steady-state value 

6 s = s - x .  

We obtain the transport equation for the total number of clusters from [45]: 

[91] 

[921 

[93] 

[94] 

a y c t  

The first order approximation is 

_ [ at + V "  Ucz~Cl = 2~,b - - ( r s+rs )a .  [95] 

Using [89], 

we have, 

a E c t  

O----i--- + V . [uo  ~ Cl]  = 2rzN~'6N~" -- (rs + rs)$a. [96] 

Cl[i] ,~ as'-2, [971 

a [98] ~ C I . ~  1 - s  

and from a first order approximation (recall that X is the steady-state value of s): 

1 1 
6a + a 6 s -  [99] ,~ Z c t  = 1 - z (1 - z )  2 

Since we know the relaxation time from [88], we may conclude that, as soon as the curves in figure 4 
become parallel (we remark that the number of bubbles per unit volume, Ni,", stays constant after 
the initial jump): 

l - - z (  6a - ( r s + r s ) ~  ~ + ~  

Y 
l/r 

(1 -- Z)2] = --(r5 + rs)6a [100] 

and, therefore, 

a6s = 6az(1 - Z). [101] 

We will make use of  these equations later on. 
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5.2. Bubble volume 
The transport equation for the gas volume in size-2 clusters may be derived from [47] as, 

2rENb Vb + 2r5(3Cl[3]~o[3] -- Cl[2]t~a[2]) (C11212fo[2]) + V. [uo(Cl[212fo[2])] = ,,,2- 

+ 2r8(2Cl[3]~c~[3] - Cl[2]~c~[2]) - 2r,3N;"Cl[2]vc~[2]. [102] 

We subtract [47], multiplied on both sides with 2~c~[2], from [102] and obtain: 

2 C 1 1 2 ] ( ~ t  2 + V'  [uova[2]]) = r2N;"2(~b- t?c~[2]) + rsCl[3]fo[3] 

+ 2(r5 + rs)Cl[3](fc~[3] - fa[2]). [103] 

The transport equation for the gas volume in size-n clusters may be derived from [48], 

L (Cl[n]nfc~[n]) + V" [~a(Cl[n]nfo[n])] = rs(nCl[n + 1](n + l)fc~[n + 1] 
dt 

- (n - l)Cl[n]nfa[n]) 

+ rs(nCl[n + 1]nfc~[n + 1] 

- (n - 1)Cl[n]nfo[n]) 

- r13N~"(nCl[n]nvcl[n] 

- - ( n -  1)Cl[n- 1] 

x ((n -- 1)fc~[n -- 11 + gb)). [1041 

We subtract [48], multiplied on both sides with nfc~[n], from [104] and obtain: 

n C l i n ] ( ~  + V'  [Uofcl[n]]) = rsnCl[n + 1]fo[n + 1] + (r5 + rs)n2Cltn + 1](loin + 1] - t3c,[n]) 

+ r,3N;"(n- 1)Cl[n- 1] 

× ((n - 1)fo[n - 1] + fb - nt3o[n]). [105] 

Let us observe how the average bubble volume inside the clusters changes, if we keep the number 
of bubbles outside of clusters constant, but suddenly decrease the average volume of bubbles 
outside the clusters. From [85] and [86], the number of clusters then remains constant. The average 
bubble volume minus its steady state value is presented for several sizes of clusters in figure 5. We 
observe that the average bubble volumes in all clusters change in the same way. This holds also, 
even though only approximately, if we change the number of bubbles outside the clusters instead 
of the bubble volume. The average bubble volumes are therefore the same in all clusters, even for 
transient processes. We also find from the numerical calculation that 

Cl[i] 

6(  ,~= 2 Cl[ i]fc, ) ~. fi( J~= z iCl[ i]fc' ),=2_~ [106] 

E iCl[i] 
i ~ 2  
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and 

10 -1 
>'= size-2 clusters 
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>~ ---size-4 clusters 
~o~ 102 ~ .  , size-5 clusters 

10 .3 ..Q 

"~-- 10.4 " -  
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dim'less time (r 5 + rs) t 
Figure 5. Differences from the steady-state values for average bubble volume in several bubble clusters. 

6(Cl[2]~o),~ 6( ~= 2 i C l [ i ] g o ) -  Cl[2] 

iCl[i] 
i = 2  

give good approximations. Using [45] and [46], we find from [106]: 

and 

6 Cl[i]gcl ,~ t~ iCl[i]go ~ ~ Z 
i i =  

[1071 

[108] 

,,09, 

We will make use of these equations later on. 

5.3. hlterfacial area density 
Our goal here is to develop a first order relaxation model for the transient interfacial area density 

of the bubbles (see [13] and [82]), which is at each instant, 

~ c~, //t 

A,~' = (36n) 1/3 u2/3 N~" e_./e~ du = tJon)'~ .,/31.b ..... .'b'~2/32rt~-~., [110] 
t)b 
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thus, 
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A~' = 4.37N~"f 2/3 [111] 

and for the bubble clusters at each time t, 

A,~, = 4.37 ~ (iCl[il)62~ 3. [112] 
i = 2  

Kataoka et al. (1986) proved that the ergodic theorem holds for the interfacial area density, thus 
we may use either the time, space or ensemble averaged value for the interfacial area density and 
still end up with the same equations, [111] and [112]. We may derive the transport equations of 
interest for the interfacial area densities from the transport equations for the void fractions and 
for the number of bubbles and bubble clusters, from [111]: 

6A/,'= Ag' N¢'v-------~ + 3 - ~  ] 

2 1 N"  
=AZ [ll3] 

and for the bubble clusters, from [112]: 

6A" A" iCI ~ ICI 

2 6(~' iClf°)  1 6 ~ i C l  
+ 

3 ~,iClfc, 3 ~ iCl  

2 dao 1 d ~ iCl 
= A "  - -  + , [ 1 1 4 ]  

icl 3 ~cl 3 ~: iCl 

where E iCl is an abbreviation for 

~, iCl = ~ iCl[i]. [115] 
i ~ 2  

The transport equations for the interfacial area densities are therefore, 

--Ot + V" [fibAg] = g~,~'"" ~b~ Ot + V" [fibab] + ~-~ \--~-- + V ' [fibN~"] [116] 

and 

0---7 + V" [fic, A~d,] = -~A/~I ~c~ ~,--~- + V" [fic,~tc,] + ,~, iCl ~, at + v .  [tic, ~ iCl] , [117] 

where fib is the average velocity of the bubbles, and tic1 is the average velocity of the bubble clusters. 
The transport equation for the void fraction of the bubbles can be obtained by setting the rate 
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of  change of  bubble volume fraction equal to the sum of the sources and sinks by [47], which 
describes the steady-state, 

c3ctb 
• a-t- + V. [abCtb] = --r2N;"22V-b + (re + r8)C11212~o 

k y, . . . . . . )  k ~ J 

Grouping Coalescence and removal 

--rl3m' ~ iClgb + r8 ~ ( i -  1)Cl[i]fo. [118] 
i = 2  J=3 

k ~ J  k ) 
v" v 

Uptake Removal 

Since we are interested in a first order relaxation model, we only regard relatively small disturbances 
from the steady-state. If  3 signifies a perturbation about  the steady-state value, we obtain from 
a Taylor expansion, canceling out the terms from the steady-state equation, [48], 

0~b 
0---t- + V" [~beb] = --2r2eb~N(," -- 2r2N;"~eb + 2(rs + rs)6(aIJct) 

--r133(~b) ~ . i C l - - r 1 3 ~ b f i ( ~ i C l ) + r 8 6 ( O ~ o ) - - r s 3 ( f a ~ C l ) ,  [119] 

where 

and, from [89], 

CI = ~, Cl[i] [120] 
i = 2  

c t [ 2 l  = a .  

The transport equation for the number of  bubbles becomes from [47] and [48], 

[1211 

dN~" i - mr,,, ~ (i - 1)Cl[i] + r82C112] + r5C112] - -  ~rl/YblVb ~t + V" [fibN~"] = + r8 i~ 3 

--  2r2N~ "2 --  rl3N;' ~ iCl[i]. [122] 
i=2 

Thus, the first order approximation is, 

~---~- + V " [fibN~"] = ½rlf~b + r86 iC - rs3 CI 

This transport equation, and therefore also the first order approximation for the void fraction of  
the bubble clusters, differs from [119] only by the first term on the right hand side, as it has an 
opposite sign: 

~O~Cl ,,, 0---~- + V" [~c#c,] = 2r2otb3N~ + 2r2N~"3otb -- 2(r5 + rs)~(azVcl) 
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We now use the transport equation for the number of clusters, Y CI, from [96] instead of the 
number of bubbles in the clusters, E iCl, as it will prove useful later: Thus we find from [101] and 
[99], 

6 ~ Cl = 6a 1 +___! [125] 
l - - X "  

Therefore, 

a ~., CI 

I ] 1 - -Z  a---i-- + v .  r~c, Y~ ct = 2r2N¢,~U¢ - (,'5 + rO T - ~  '~ y Ct. [126] 

We are interested in a transport equation for the number of bubbles in bubble clusters, E iCl. To 
this end, [89] implies, 

2 - s [1271 iCl ,.~ ias i-2 = a (1 - s) --------~' 
i ~ 2  

Therefore, 

2 - Z  3 - Z  
6 ~ iCl ~ 6a ~ + afs - -  [128] 

(1 (1 - z )  3' 

which from [101] is 

6 ~. iCl = 6a 3 - (1 - Z) 2 
( 1  - Z) 2 [129] 

This is an accurate solution for large times, but it underestimates the number of bubbles in clusters, 
Y. iCl, for small times. From our numerical calculations, we find the approximation, 

1 +______L_z [130] 6 ~ iCl = 26a (1 - Z):' 

which is a compromise between the analytical solution for large times, [129], and the solution for 
small times, which may be found from the old steady-state values. We find from [125] as an accurate 
solution for large times, 

6 ) " i C l  3 1(-1 ~ ) 2  = _ ~ E c t ,  [131] 

which we approximate for our numerical calculation, as done with [130], 

I + X  
6 E iCl = 4 ~  6 E CI. [132] 

The transport equation for the number of bubbles in the bubble clusters is therefore, from [126], 

a~iCl  I J " 1 + Z ~ N "  rs)T--~z6~iCl. -~f "~- V" ~lcl E iCl  = 8r2Nb ~ o b - -  (r5 -4- 1 --  Z [1331 
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The first order transport equation for the interfacial area density of the bubbles, [116], becomes, 

3 {OA;~' ) ,,, Jab rs) J(afa)  
A'-'~ \ - " ~ -  + 17. [fibA,-~'] = - - 4 r 2 J N £ "  - -  4r2N~ -~b + 4(rs + ab 

-- 2r13 ~ ~ i C l -  2r,3J ~ iCl + 2rs ~ -  2 r s -  
g~¢, y' Cl 

ab 

+ l r  I Jab J ~ i C l  J ~ CI ha _ 4r2JN~" 

JNb" x--, 
--rl3 - - ~  2. iCl -- rl3J E iCl. [1341 

Let us now convert the right hand side of [134] into a form where only disturbances of Ad, A+~, 
Ctb and Ctc~ occur: the disturbance in the number of bubbles is, from [113]: 

" JAg' 2 JCtb [135] J N ~ = 3-'-77;r-- - - .  
M;' A ,~ ab 

The perturbation of (aga) is, from [1091, 

J(aFc,) = (1 - X) 2 J~c~. [136] 
2 - Z  

The perturbation in the number of bubbles in the bubble clusters is, from [114], 

J ~. iCl A ~:~"' 2 Jacl 
- -  - 3 Aicl ~cl 
~ iCl 

[137] 

The perturbation in (go ~ CI), is from [106], 

6ao. 

The perturbation in a is from [130], 

(1 - -7 . )  ~ ( l - z )  2 1 / J A "  
- .-7- {30~o ~ - 2Jacl . 6a 2(1 +Z-) J Z iCl - 2(1 -Sl-" Z) ,~c, \ -'~,c, / 

Combining these expressions and using [134]: 

3 {A;~' . . . .  "~ a~ Ad r2 r2 ( 1  - zY- Ja¢~ 
" - -  / V b .4 ~ Vb Vb 

A-~,~'\#t +V'[ubA,~] =- -12r2-z - -m, , ,+8- : - J~ tb- -4v-Jab+4( rs+rs )  ~-- -~  

Otcl J Ai'~l JCtcl Jacl 
- -2r l3  _~cl j a b _ 6 r j 3 ~ _ o ~ + 4 r l  3 _ + 2 r s - -  

Vcl~Xb t)cl ab 

1 - -  Z 6 ~ 1  . t rl/-~b e 
-t- ~ O a b  - 2 r s 2 _ X  ~b ab 

[138] 

[139] 
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+r8 \~ A;~I - 2 1 ) '=-  

~:~ 2 (1 --  Z) ~ fu 3 ~to A "  60to 
+ (r~ + rs) ~ 1  ~ - - ~  tTc~ ctu A,'~ eb ] 

12rz ~_~ 6A,4; &tb ~c, ( A~' 2 6~b) 
- -  ~ + 8 r 2  - -  r13 7 3 ~ -- - -  

v~ A,~ --~b Vc, \ A,~ ~b ] 

" &c~ [140] - 0~ClfiA~c~ 4- 2r13 : . 
--3rx3 ~cl Ai~'~ vo 

We may write this equation as a first order relaxation model, using the fact that  the perturbation 
in the void fractions of  the bubbles and bubble clusters from their steady-state value are of  opposite 
sign but have equal value. Therefore, 

t i t  t i t  OA~' " A "  x A,~____~ . . . . . .  A , ~  O----~ + V" [fibA;] = a,,(A,~ -- , ~  + a,z A ' ~  (A~c, - A~:,~) + a,3 ~ (~t~ -- ~tb~), [141] 

where 

~cl [142] a l l  = - - 8 r 2 ~  b - -  r13--2--~ 
Vb 130 

~c1 ~ J b  (_Q_I _-_ ~)2 ~cl~b f 
a,z = --2r~3 _-- + (r5 + rs) 2(1 +~-) + - -  t l  vo ~b/~cl r8 ~bVCl 

2 - Z "~ O~CI 
4 0  -7- ) ) )  - -  r t3  ~Cl' [143] 

or, using [44] to eliminate (r5 + rs), 

al2 = r l3  fCl 4X(1 + Z) r5 + r~---s 

and 

= r2 2 -- Z -~r,3 Vc-=-~ a13 ~ b b  ~b(8 -- 4)--~(r5 + rs) (1 -- ;0 2 Ctc~ 

_~r,3 ~_2_ 2 rs + 2rs1--  Z fb 
.c1 + + 

- -- 6b (1 -- Z) 2 + ~r2 Ctb + ~r,3 ~tc___2~ 
5 3-8 vo 4(1 + Z) vo  

or, using [44] to eliminate (r5 + rO, 

[1451 

~tb 1 I2(1 Z)Z+ rs ] 2~ C t b t T b  ;((2 -- Z) a , 3  = -~r:Tb + 4r2 ~ - 2 r , 3  -q- [146] - -  3°tl2 ~Cl" 

Similarly, the transport  equation for the interracial area density of  the bubble clusters, [117], 
becomes: 

3 (8Ai~'~ ) r8) 6(argo) 
A~c--~"~ ~ Ot + V" [fioA:~] = 4r2 ~c~ ~N~" + 4r2N;' &tb _ 4(r5 + 

OtcI OtCl 

+2r,3 ~ ~ iCl + 2r~3 ~tc~---~b 6 ~. iCl - 2r8 6~tc__._.]~to 
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( -  0 ,, 
+ 2  6 vo ~ C + 8r2 ~c~Fb 2 - -  

- ( r ~ + r s )  l - z 6 ~ i C l  
[147] 

We use [135], [136] and [114] and obtain, 

A~c,3 \( a A'#'a t ) ac, \( A g" 60~b f 6b O~b . + V.  [fioA;g,] = 4r2 e--£~ 3 6A~; a~ 6~b __ - 2 + 4r2 = 
~b aC~ 

--4(r~ + rs) (1 -- Z) 2 6~c~__ + 2 _---rl3 6~b 
2 -- )~ ~C~ Va 

+2r ,3~c~ \  ~ - - 2  ~c, / 2rs +2 r8  
ac~ 2 - Z ac~ 

bag'  26ab]  ~,6c, (1 + Z) 3 ~ - 
+ 8r2 ~c~6~, 2 - ~ A,~ ~b / 

- ( r ,  + r0  ] - ~  \- A'#, - 2 ~CI J" [148] 

We may write this in the form of  a first order  relaxation model  as: 
t i t  

a A i ~ l  [~! a .. . .  A i~ l  . . . . . . . . . . . . .  Aicloc : - -  0~bov), a--~ + v • t Cl~-l~Cq = a2~ ~ (A,, - A,~) + a22(A~o - A~c~o~) + a23 0~b~ I,~b 
Aiboc 

where 

=4r2  a~ (1 + 2 g c ' ( 1  + X ) ~ ,  a21 

[1491 

[1501 

a22 = 2ru _~bvo -- (r5 + r0  11 + #, 

or, using [44] to eliminate (r5 + r0,  

[1511 

and 

ab eb 1 -- Z [152] 
a22 = 2ru =-vcl - -  r13 gb )~(1 + Z) 

a23 = - ] r 2  e~ a~ (1 - Z) 2 eb 2 r u a b .  4 r 0~ + ]rs eb ~rs 1 -- Z eb acl---~b + ~ r 2 -  + 4(r~ + rs) + . . . .  
~Cleb 2 -" ~ ~CI 3 eCl " 3  13 ~CI~CI ~CI 2 Zmc, 

16. ~b 2~CI (1 + Z) 
c~ b ~ - Z) 

(r5 + rO 1 - Z 2 eb 
1 ~ Z 3 ecl 

_ - 4 r 2  a~ ( 1 + 4  g ° ( l + x ) )  

+~ru ag F ( l - 2 z ) ( l  4 ~ - ~ _ - ~ 3 +  i + 2  [153] 
• c,e-  L (2 - z)( l  + 3.,3 eel • 

We also need the t ransport  equat ions for the total void fraction o f  the two-phase system, 

a~ 
a--t + V • [fib~b] + V "[fic, aCl] = 0 [154] 
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and  for the void f ract ion of  the bubbles  outs ide  o f  clusters,  f rom [119]: 

63~ 63Ub 
63--7 + V" [U~ad = -- ab 

' ( 6A;' 2 6ab'] ~b - - - - 2 r 2 ~  3 ~ - -  - -  - - 2 r 2 = 6 a u  
D b ~ Apo O~b /] Vb 

+ 2(rs + r8) ~ 67cl 

~cl ~ ~cl (. 6A,d "] 1 
--r,3----O0~b- r,3~b ~-7c ~ ~,~--7~,,, -- 2 6ac_~ -- Z bac,. 11551 

Vc, Arc, ~Cl / + r ~ & c ,  - -  r~ 2 

We can rewri te  this equa t ion  in the form of  a first o rder  re laxa t ion  model ,  

&b C(b~c 
(A,-o - -  ,-o~c! + a32 A ~  ( A , ~ I -  i C l : ~ / +  - -  - -  A "  ~ A " 63t + V • [fi~b] = a3~ A~'.~ 

where 

[1561 

a31 = - -  6r2 _--, 
Vb 

[1571 

and  

~CI 
a32 ~--- - -  3 r l3  

Vcl 

eu ~u 2(rs + r8) (1 --  Z)" a33 = 4r, ~- -- 2r2 =- - -  
" Ub Ub 2 - Z 

~CI {~b 1 -- Z 
r~3 -- -  - 2r13 ----- - -  r8 + r8 

Vc~ Vct 2 - Z 

[1581 

~b ~b //2(1 --  Z) 2 + r8/(r5 + r8)'~ 1 + ~b 
= 2 r , =  - rt3 . . . .  ! ) [159] 

F u r t h e r  terms may  be in t roduced  into this equat ion .  Compress ib i l i ty  and  phase  change effects are 
in t roduced  in the next  chapter .  Tu rbu len t  bubble  di f fus ion also gives an  add i t iona l  term which we 
do  no t  include in the present  paper .  

5.4. Compressibility and phase change effects 

Kel ly  (1993) cons idered  two add i t i ona l  source terms for the interfacial  a rea  density;  one due to 
the compress ib i l i ty  (C) o f  the gas, and  the o ther  due to possible  v a p o r  genera t ion  (g) near  the wall. 
I f  we include these source terms in [114], [149], [156], we obtain:  

~A~' . . . . . .  A~' .  . . . . . .  
63---7- + V "  [f ibA,~']  = au(Aa ,  --  A , ~ )  + a~2 ~ (A~c,~ - A~cl~)  

+ al3 - [160] 
~ \ dt L + \  dt L'  

~Ai~'l Aicrl . . . . . . . . . .  A" 
63--7- + V" [fic, A~'d] = a2, ~ (A,~ - A , ~ )  + azz(A~cl -- ~c~) 

+ A£,~ (ab- ~b~) + (dA£,) (dAi~,) [161] 
a23 ~xb---~- ~ dt }c +~ dt }r 

and  

~ b  ~boc . ,  ,,, ~bQc , .  ,,, 
at  + V .  [fibab] = ~3~ ~ (A,~ -- A , ~ )  + an ~ (A~cl --  A,o~) 

/'d~b'~ /"d~b'~ [162] 
+ a33(~b -- ~b~) + \ dt  Jc  + \ -d tJr"  
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Kelly (1993) proposed for the source term due to the compressibility of the gas, 

P631 

where (du,%/du,,) is the derivative of the interfacial surface area with respect to volume for a single 
dispersed bubble, which for spherical bubbles is, 

P641 

Using for the average bubble diameter, bb in [164], the Sauter mean diameter of the bubbles, 

6 A,$’ -=-=-* 
Db ab 

P651 

Using eqns [ 1651, [164] and [ 1631, we obtain, 

Analogously for the bubble clusters, 

and for the bubble void fraction, 

thus, 

The last source term is the vapor generation at a solid surface (Kelly 1993) 

P661 

[I671 

[1@31 

[1691 

[1701 

where a, and u, are the interfacial surface area and volume of the bubbles caused by nucleation 
at the wall, respectively. We may assume that no clusters are produced instantly from vapor 
generation, thus, 

’ 

and 

[1711 

~1721 

We summarize the recommended transport equations in table 2. The coefficients, which are used 
in these equations, are summarized in table 3. The steady-state values, which are the reference in 
the transport equation, may be found from the equations summarized in table 1. 
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Table 2. The first order relaxation model 

Transport equation for: 
The interfacial area density of the bubbles outside the bubble clusters 

The interfacial area density of the bubbles inside the bubble clusters 

,,I 11, I,, 
% + V [NAZI] = ax 2 (AZ - A&) + an(Ad - AL) + az3 2 (ab - abl) + 

n, 

( ) 
3 

c 

The void fraction of bubbles outside of clusters 

$ + V [irbab] = a31 z (AE - AL) + a32 z (AK - A&) + a33(ab - abor) + (qc + (q 

Due to compressibility of the gas 
The source terms: 

(!y), = ;p,am,(Qp + v. Pcl’pGl) 

Due to vapor generation at a solid surface 

Table 3. The coefficients for the transport equations 

The coefficients 

a12 = rl) 2 
1 

-3 + ____ 
4x(1 + x) 

2(1 - x)? + Lx- 
r5 + r8 (’ + “I I> 

I 
aI3 = &6k, + 4r2 E - fr,, 1- 

“b x(2 - xl [ 
2(1-x)‘+* +jalzz 

I 

a3) = 2r2 2 _ r13 5 2c1 - x)’ + r8/(r5 + o) 
Ub Ub x(2 - x) 

- r,, I 
zkl 
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6. SUMMARY AND CONCLUSIONS 

In order to predict the interfacial area density for bubbly two-phase flows, it is sufficient to 
consider only individual bubble coalescence and break-up. Indeed, bubble clusters also have to be 
taken into account. The known models for bubble coalescence and break-up may be extended to 
bubble clusters resulting in Boltzmann transport equations for both the bubbles and the bubble 
clusters. The steady-state values describing the size distribution and number of bubbles both inside 
and outside of the bubble clusters may be evaluated from such an extended model. In addition, 
we may obtain a first order relaxation model for the interfacial area densities of the bubbles and 
the bubble clusters if we write the transport equations for small deviations from their steady-state 
values. These transport equations are very convenient for the numerical evaluation of transient 
multiphase flows using multidimensional two fluid models. 
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